R-FLOW 仿真模拟案例

颗粒・流体耦合 燃烧・反应模拟	
炉排式焚烧炉内的垃圾焚烧模拟	2
流化床污泥焚烧炉内的燃烧模拟	5
气化熔融炉内的垃圾和焦炭燃烧模拟	6
回转式焚烧炉内的垃圾燃烧模拟	8
回转式热解气化炉内的垃圾气化模拟	10
流化床反应器内的 CO2 吸收模拟	12
颗粒・流体耦合 蒸发・干燥模拟	
FCC 装置内的流动传热,液滴蒸发,催化剂颗粒运动模拟	13
火药干燥模拟	15
喷雾干燥器内的液滴蒸发模拟	16
喷嘴雾化液滴的蒸发模拟	18
基于离散元法(DEM)的颗粒模拟	
湿式球磨机内的液体流动及球粒子运动模拟	20
外部磁场中的磁性粒子行为模拟	21
基于 MPS 法的自由表面流动模拟	
基于 MPS 法的末级齿轮内的液体流动模拟	22
滴流床反应器内的液体和气体流动模拟	23
搅拌槽内的多相流流动模拟	
搅拌槽内的液滴分裂和合并模拟	25
生物反应器内的气体吸收模拟	26

<u>联系方式:</u> R-flow Co., Ltd. Rong Degang E-mail: rong_2@rflow.co.jp Tel: (+81) 048-929-2345 http://www.rflow.co.jp/

炉排式焚烧炉内的垃圾焚烧模拟

使用 R-FLOW 软件对广东省的某 750 t/day 炉排式焚烧炉内的垃圾焚烧过程 进行了仿真模拟。

模拟中采用 DEM(Discrete Element Method)代表粒子模型^{1、2)},对垃圾颗粒运动进行追踪;考虑了气体的可压缩性和化学反应以及颗粒燃烧反应;并将浓度场和温度场及辐射联立求解。垃圾颗粒燃烧是基于粒子干燥/热解/焦炭燃烧这三个过程来模型化的。气相反应考虑了 O₂,H₂O,CO₂,CO,CH₄.H₂等成分。

References

- Takeda, H., Granular flow simulation by continuum model, J. Soc. Powder Technol., Japan. **40** 746-754 (2003)
- Takeda H., Granular flow simulations in the industrial sector, J. Soc. Powder Technol., Japan. **50** 264-271 (2013)

投入炉排上的垃圾采用颗粒来近似,颗粒燃烧考虑了水分蒸发,挥发分热解和焦炭燃烧。

模拟中采用了代表粒子模型。随着燃烧的进行,代表粒径(用于颗粒间接触判断的 粒子直径)和实际粒径(垃圾粒子的实际直径)发生变化。对于代表粒径,燃烧过程中 体积减小(质量减少和密度变化)。对于实际粒径,计入了代表粒径的变化,也考虑了粒 子的破碎。通过设定垃圾投入时和燃尽时的实际粒径,可以在模拟中对燃烧过程中的实 际粒径进行计算。在需要控制模拟中的飞灰比例时,可以输入颗粒燃尽时的粒度分布。

气体浓度(体积分率)分布。模拟中涉及的气相组分包括 O2, H2O, CO2, CO, CH4, H2等。

流化床污泥焚烧炉内的燃烧模拟

投入到流化床焚烧炉内的污泥和生物质的燃烧过程是通过颗粒(污泥·砂粒) 以及气体的流动/ 传热/反应的模拟来再现的。污泥颗粒的燃烧过程被划分为 水 分蒸发/挥发份热解/焦炭燃烧 等三个阶段。气相燃烧涉及了 O₂, H₂O, CO₂, CO, CH₄, H₂ 等浓度成分。

气化熔融炉内的垃圾和焦炭燃烧模拟

垃圾颗粒的燃烧/气化是基于 水份蒸发/挥发份热解/焦炭反应 这三个过程来模型化的,而煤焦颗粒只涉及焦炭燃烧/气化模型。

氧气(O_2)和可燃气体的浓度(体积分率)分布。通过气化反应生成了一氧化碳(CO),氢气(H_2),甲烷(CH₄)等可燃气体。

回转式焚烧炉内的垃圾燃烧模拟

固废颗粒的燃烧是基于 水份蒸发/挥发份热解/焦炭燃烧 这三个过程来模型化的。

气体浓度(体积分率)分布。模拟中涉及的气相组分包括 O2, H2O, CO2, CO, CH4, H2等。

回转式热解气化炉内的垃圾气化模拟

投入回转式热解气化炉内的固废的气化过程模拟案例

通过对固废颗粒和 气体的流动/传热/ 反应的耦合,再现了 热解气化过程。

固体颗粒的反应过 程被划分为水份蒸 发/挥发份热解/焦 炭反应 等三个阶 段。

气相反应涉及了 O₂ /H₂O/CO₂/CO/ CH₄/H₂等浓度成 份。

气体浓度(体积分率)分布。模拟中涉及的气相组分包括 O2, H2O, CO2, CO, CH4, H2等。

流化床反应器内的 CO2 吸收模拟

流入固定床中的二氧化碳气体被催化剂颗粒(Na2O)吸附的反应过程模拟。

上图中,从左到右依次为,催化剂粒子(Na₂O)的二氧化碳(CO₂)吸附率,气体中的 CO₂ 濃度,气体流速分布。其中,催化剂粒子投入时的 CO₂ 吸着率为 0。

FCC 装置内的流动传热, 液滴蒸发, 催化剂颗粒运动模拟

Fluidized Catalytic Cracking (FCC)反应器内的气体流动和催化剂颗粒运动 以及液滴蒸发过程,通过 R-FLOW 的颗粒和流体耦合模拟得到再现。模拟中也考虑了辐射场。

催化剂颗粒和液滴的模拟中,采用了 DEM 代表粒子模型。在液滴的蒸发过程中,随着液滴质量减少,用于粒子间接触判断的代表粒径和实际粒径都逐渐变小。在计算催化剂颗粒和液滴的运动/传热/反应时,采用实际粒径。

Catalytic Particle Temperature

Droplet Evaporation Rate

液滴蒸发速度的计算方法为:液滴温度达到沸点时,液滴从高温气体吸收的热量全部转换为液体的汽化热。

火药干燥模拟

通过颗粒和流体的耦 合计算,火药颗粒投入 到高温高速的压缩性 气流中的干燥过程得 到再现。

对于火药颗粒的模拟,采用 DEM 代表粒子模型。其中,对粒子投入时的实际粒径,设定了粒度分布。在粒子干燥过程中,随着粒子质量的减少,代表粒径(用于粒子接触判断)和実粒子径都减小,粒子密度也减小。在计算颗粒的运动/传热/反应时,采用实际粒径。

颗粒中的水分蒸发速度的计算方法为:颗粒温度达到沸点时,颗粒从高温气体吸收的热量全部转换为液体的汽化热。

喷雾干燥器内的液滴蒸发模拟

部中心的喷口流出后 的蒸发过程,通过颗 粒和流体的耦合求解 得到再现。

Moisture Evaporation Rate

对于液滴蒸发模型,除了考虑沸腾,也考虑了基于液滴表面和气流中的蒸气 压差而发生的蒸发。

本次模拟中的液滴内部没有包含固体物质;如果需要可以对固体表面附着液 体的蒸发过程进行模拟。

上图中, 液滴采用了代表粒子(粒子接触判断用的粒子)的 20 倍放大表示。

液滴粒子的模拟中采用了 DEM 代表粒子模型。对初始液滴的实际粒径设定 了粒度分布。随着液滴蒸发,粒子质量减少,代表粒子(粒子接触判断用的粒子) 和实际粒子的粒径都随之减小。液滴的运动/传热/蒸发等计算时采用实际粒径。 上图中,液滴采用代表粒子的 20 倍扩大表示。

喷嘴雾化液滴的蒸发模拟

通过粒子和流体的耦合计算,再现了从喷嘴射出的雾滴的蒸发过程。

雾滴的模拟中采用了 DEM 代表粒子模型。对初始雾滴粒子设定了粒度分布。 随着雾滴的蒸发,雾滴质量减小,代表粒子(粒子接触判断用の粒子)和实际粒 子的直径都相应减小。雾滴的运动/传热/蒸发等计算时采用实际粒径。

对于雾滴蒸发模型,除了考虑沸腾,也考虑了基于雾滴表面和气流中的蒸气 压差而发生的蒸发。

上图中,雾滴粒子采用代表粒子的10倍扩大表示。

在喷嘴出口附近,有雾化空气流入。而雾滴的蒸发产生水蒸气。

湿式球磨机内的液体流动及球粒子运动模拟

湿式球磨机内的液体流动和球运动的耦合计算案例。

液体流动采用 VOF 法来模拟。而直径 2 mm的球粒子的运动,采用 DEM (离散 元法)来计算。对于脱离液体区域的粒子(在空气中),粒子表面有液体附着;模拟 中,通过考虑粒子附着力来对应。

外部磁场中的磁性粒子行为模拟

墨粉等带磁性粒子在磁场中散开时,会发生磁刷现象。模拟中,采用离散元法(DEM),通过在粒子中心存在无限小磁偶极子的假设,来计算粒子所受的磁力和粒子行为。

外部磁场中的磁性粒子行为。粒子颜色表示为磁偶极矩。

基于 MPS 法的末级齿轮内的液体流动模拟

某一瞬间的液体流动状态。MPS 粒子的颜色表示为粒子(液体)速度的绝对值。

滴流床反应器内的液体和气体流动模拟

液体注入滴流床(充填了形状各异的催化剂粒子)后的气液流动,通过对液相 和气相分别采用无网格的 MPS (Moving Particle Semi-implicit) 法和常规网格进 行模拟。

通过催化剂粒子空隙的液流速度分布。粒子颜色表示为 MPS 粒子速度的绝对值

滴流床中部的垂直截面上的气体流速 通过 MPS 粒子位置来表示的滴流床中 分布。

部的垂直截面上的液体分布。

滴流床反应器内气液流动模拟的步骤

在进行滴流床内的流动模拟前,需 要设定各种形状的催化剂粒子。

先是制作各个催化剂粒子的 CAD 形状,然后使用 DEM 来生成相应的连 结粒子;在此基础上,进而实施流动模 拟。

Step 5 前页对应的滴流床内各形催化剂粒 子的制作法。

Step 1 :

各种形状的催化剂粒子可采用 R-FLOW 的前处理软件所生成的壁面要素,也可以用其 它 CAD 软件生成的 STL 图形文件来对应。Step 2:

Step 3: 采用 DEM 模拟上述表征催化剂粒子的连结 粒子从自由下落到静止堆积状态为止的过程。 Step 4:

通过求解器,将静止状态的连结粒子恢复 为相对应的壁面要素。 Step 5:

一来用前页所述的 MPS 法和常规网格的组合来模拟液体和气体的流动。

充填了球形催化剂颗粒的滴流床内的 MPS 法液体流动模拟案例。

搅拌槽内的液滴分裂和合并模拟

考虑了液滴分裂和合并的搅拌槽内液-液分散模拟案例。

采用多相流模拟的欧拉-欧拉方法来 处理液滴和其它液体。对液滴设定了 13 个 对应不同粒径的相,用于处理液滴分裂及 合并。

对液滴分裂模型,和气泡分裂模型相 似,采用液滴从流场中所受的剪切应力来 计算最大安定液滴直径。

对液滴合并模型,采用不同液滴接触时的速度差来计算韦伯数,并加入 R-FLOW 独创的液滴合并模型。

伴随液滴的分裂及合并,液滴直径发 生变化,相应的液滴所属的相发生迁移, 从而得到搅拌槽中的液滴直径分布。

左图为用 VOF 法进行模拟得到的液面形状和液流速度分布;右图为液滴的韦伯 平均直径的空间分布。

生物反应器内的气体吸收模拟

通气搅拌型生物反应器内的动物细胞/微生物气体吸收模拟案例。

通气供给的氧气有一部分融入液体成为溶解氧(DO);动物细胞在液体中吸收 DO并释放二氧化碳。模拟中,气液两相流采用欧拉-欧拉方法来处理,并考虑了气 泡分裂及合并。模拟结果包括,液相流场,气泡分布,KLa/DO浓度/培养液浓度/ 气泡中的 O2和 CO2浓度等空间分布。

主要计算条件	
搅拌槽直径	2[m]
液体深度	3.6[m]
搅拌桨转速	100/200[rpm]
液体密度	1000[kg/m ³]
液体粘度	0.001[Pas]
DO 扩散系数	3.3×10 ⁻⁹ [m ² /s]
DCO2扩散系数	2.2×10 ⁻⁹ [m ² /s]
通气成分	空气
通气量	0.2[m³/s]
微生物呼吸速度	0.0012[kg/m ³ s]
培养液注入量	0.001[m ³ /s]

左图为垂直截面上的液体流速分布。由于搅拌桨转速低,通气的影响相对较大,所以在搅拌槽中心区域的下降流较弱。右图为无通气状态下的流场(参考用).

气泡体积分率的分布。搅拌槽内的气泡 体积分率平均值,在搅拌桨转速为 100rpm 和 200rpm 时,分别为 0.164 和 0.265。

Sauter 平均气泡直径的空间分布。搅拌槽内的气泡直径平均值,在搅拌桨转速为100rpm和200rpm时,分别为2.26[mm]和1.20[mm]。

氧气的 kL 分布。搅拌槽内的 kL 平均值, 在搅拌桨转速为 100rpm 和 200rpm 时, 分别为 0.000683[m/s]和 0.000968[m/s]。

氧气的 kLa 分布。搅拌槽内的 kLa 平均 值,在搅拌桨转速为 100rpm 和 200rpm 时,分别为 0.252[1/s]和 0.944[1/s]。

液体中的 DO 浓度分布。 搅拌槽内的 DO 平均值,在搅拌桨转速为 100rpm 和 200rpm 时,分别为 0.00348[kg/m³]和 0.00548[kg/m³]。

气泡中的氧气浓度分布。搅拌槽内的氧气平均值,在搅拌桨转速为 100rpm 和 200rpm 时,分别为 0.170[-]和 0.183[-]。

培养液浓度分布。 搅拌槽内的培养液浓 度平均值,在搅拌桨转速为 100rpm 和 200rpm 时,分别为 0.0121[kg/m³]和 0.0081[kg/m³]。

细胞呼吸速度分布。在搅拌桨转速为 100rpm时,搅拌槽上部由于混合不良,存 在呼吸速度低/呼吸困难的区域。